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Chapter 3

Time Response to a Step Excitation

3.1 Introduction

The nonlinearity of the atoms-cavity system yields a rich spectroscopic

structure. At intermediate intensities, however, the transmission of the cavity

as a function of frequency is multi-valued, which complicates the extraction of

information about the frequencies present in the system. A different approach

is to look at the time response to step excitation to measure the frequencies

present in the resulting oscillations as the system returns to steady state. For

a linear system, the Fourier transform of a time response to step excitation

measurement is its spectrum. In the nonlinear case, as is the case of our sys-

tem, the Fourier transform gives a spectrum, different from the transmission

spectroscopy result. The Fourier transform of the time response to an infinites-

imally small step gives the local eigenvalues of the system, even in a nonlinear

regime.

The time response of an atoms-cavity system has been used by several
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groups to study the dynamical evolution of the system. Kaluzny et al. [6],

in the group of Haroche, measured oscillations in Rydberg atoms travelling

through a microwave cavity. They prepared the atoms in an excited state and

measured the survival probability of atoms in the excited state as a function of

atom-cavity interaction time. They found that while in the cavity the atoms

oscillated between the excited and less excited state at the rate g
√

N̄ , where

N̄ is the effective number of atoms in the cavity (see Eq. 1.6).

In the optical regime, the time response to a turn-off step excitation of an

atoms-cavity system has been studied by Brecha et al. [7] in the low intensity

limit. They measured the oscillatory response of light transmitted through an

atoms-cavity system after the external cavity excitation was suddenly changed

from a steady state intensity to a slightly lower intensity (high:low = 6:5).

These experiments were able to establish an oscillation frequency dependence

on the number of atoms present in the system, in rough agreement with the

prediction of Agarwal, Ω0 = g
√

N [2]. Measurements with a larger high:low

ratio were not able to resolve oscillations as the system returned to its steady

state.

In a condensed matter system, Wang et al. [8] measured the coherent

exchange of energy between coupled cavity-exciton modes in the nonlinear

regime. In this condensed matter system these dynamics take place on the

femtosecond time scale.

We performed a set of experiments in which we excited the system with

a pulse of light instead of a constant amplitude driving field. We kept the

atoms, cavity, and laser on resonance, and measured the intensity of light

28



transmitted through the cavity as a function of time after the step changes.

The parameters g, κ, and γ⊥ of our system are all of the order of 3 MHz. In

order to probe its dynamical behavior, the step change must be significantly

faster, on the order of 100 MHz.

The system starts with the atoms in the ground state with no driving

field. After the light is turned on, the field inside the cavity oscillates as it

comes to equilibrium at a non-zero steady state. After the oscillations have

well disappeared into the noise (15 times the decay time), we turn off the

input light and let the system come to a new undriven equilibrium state. The

time response to the turn-on probes the dynamics of the system for a non-zero

driving field, while the response to the turn-off yields information about the

undriven system. Since the system is on resonance, the steady state intensity

in the cavity is much lower than it was for the measurements in Chapter 2,

where we were on the vacuum Rabi sidebands. We are operating along the

central dashed line of Fig. 2.3, or along the lower line of Fig. 2.2, the so-

called lower branch of on-resonance optical bistability. We keep the input

intensity low enough that the system is always on the lower branch. The

output intensity, however, can be momentarily much higher than the steady

state for the corresponding input intensity discussed in Chapter 2.

3.2 Model

The temporal evolution of the system is governed by the Maxwell

Bloch equations. For a single mode plane travelling wave system on
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resonance [25, 29],

dx

dt
= −κ(x− y − 2CP ), (3.1)

dP

dt
= γ⊥(xD − P ), (3.2)

dD

dt
= −γ‖[

1

2
(xP ∗ + x∗P ) + D + 1], (3.3)

with x∗ and P ∗ following the complex conjugate equations of Eq. 3.1 and

Eq. 3.2, respectively. x ≡ 〈â〉/√n0 is the intracavity field and y ≡ E/κ
√

n0 is

the driving term, where E is the input field amplitude (in units of 1/s). P is the

normalized atomic polarization, and D is the normalized population difference

between the upper and lower atomic states, with D = −1 representing all

atoms in the ground state. C = C1N is the many-atom cooperativity. By

setting the time derivatives to zero we can find a steady state equation for the

system relating x and y (Eq. 2.1),

y = x

(
1 +

2C

1 + |x|2

)
. (3.4)

From the steady state of Eq. 3.1, we see that y = x − 2CP . There are two

contributions to y: x, and the collective polarization 2CP = −2Cx/(1+ |x|2).

For intermediate intensities (x ∼ 1), the polarization is nonlinear. For low

intensities (x � 1), however, the system is still linear, and Eq. 3.4 reduces to

y = x(1 + 2C).

To analyze the eigenvalues of the plane wave ring cavity configuration we

linearize the set of five equations about their steady state values. For this

analysis we assume that γ‖ = 2γ⊥, i.e. there is only radiative broadening of

30



the atoms. The variables take the form

η = η̄ + ξ, (3.5)

where

η = (x, x∗, P, P ∗, D)T , (3.6)

η̄ = (x, x∗,−x/(1 + |x|2),−x∗/(1 + |x|2),−1/(1 + |x|2))T , (3.7)

and

ξ = (∆x, ∆x∗, ∆P, ∆P ∗, ∆D)T (3.8)

Here the T denotes transpose. ξ obeys the linear equations

dξ

dt
= Aξ. (3.9)

The eigenvalues of the system, are governed by A:

A =



−κ 0 2κC 0 0

0 −κ 0 2κC 0

−γ⊥/(1 + |x|2) 0 −γ⊥ 0 γ⊥x

0 −γ⊥/(1 + |x|2) 0 −γ⊥ γ⊥x∗

γ⊥x∗/(1 + |x|2) γ⊥x/(1 + |x|2) −γ⊥x∗ −γ⊥x −2γ⊥



(3.10)

We find the eigenvalues of A numerically for different values of the intra-

cavity field x. By then using Eq. 3.4, we have a relation between y and the

eigenfrequency.
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We modify the Maxwell Bloch equations in a manner following Lugiato

[29, 30] in order to properly take the mode function of the cavity into account.

The mode function u(r) must be normalized such that
∫
V u2(r)d3r = 1. The

model in [29] which we follow incorporates only a Gaussian transverse profile,

and has a normalization of unit length, with the following mode function:

u(r) =

√
2

πω0
e−ρ2

(3.11)

with a normalized x and y of

xG =

√
2

πω0
xpw , yG =

√
2

πω0
ypw, (3.12)

where ρ is the radial dimension in the cavity, in units of the cavity mode waist.

We also have to include the standing wave, so the mode function is:

u(r) =

√
4

πω0
cos(2πz)e−ρ2

, (3.13)

where z is the axial distance in the cavity. For purposes of comparison, we

keep the normalizations of Eq. 3.12 and modify the Maxwell Bloch equations

to obtain

dx(t)

dt
= −κ

[
x(t)− y − 2C

∫ 1

0

∫ ∞

0
dρ dz 4

√
2ρe−ρ2

cos(2πz)P (ρ, z, t)
]
,

(3.14)

∂P (ρ, z, t)

∂t
= γ⊥[x(t)D(ρ, z, t)

√
2e−ρ2

cos(2πz)− P (ρ, z, t)], (3.15)

∂D(ρ, z, t)

∂t
= (3.16)

−γ‖
{

1

2
[x(t)P ∗(ρ, z, t) + x∗(t)P (ρ, z, t)]

√
2e−ρ2

cos(2πz) + D(ρ, z, t) + 1
}

,
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where again we have the complex conjugate equations of Eq. 3.14 and Eq. 3.15

governing x∗ and P ∗. By setting the time derivatives in Eqs. 3.14–3.16 to

zero, one can calculate the steady state equation relating input and output

intensities:

y = x +
4C

x
ln(1/2 + 1/2

√
1 + 2|x|2). (3.17)

In the low intensity limit (x � 1), Eq. 3.17 reduces to y = x(1 + 2C), as did

Eq. 3.4. The form of Eq. 3.17 is slightly different than Eq. 2.1 with Eq. 2.2

because of our normalization for x and y. For direct comparison to [29] we used

n0 appropriate for that case, which differs by that in Eq. 2.1 by 3/4. Applying

that scaling to Eq. 3.17 recovers the steady state equation for a Gaussian

beam Fabry-Pérot cavity found in Chapter 2. The steady state equation is

used to check our numerical simulations for accuracy, and to establish ycrit,

the smallest y for which there is on-resonance bistability, for various values of

C. Figure 3.1 shows a bistability curve generated with Eq. 3.17 for C = 50.

We numerically integrate Eqs. 3.14–3.16 by discretizing along the z axis

from 0 to 1 and along the ρ axis from 0 to 3, each into 10 units. We then have

a 10 by 10 grid which represents a radial section of the mode volume, which

results in 302 differential equations: one each for x and x∗, 100 each for P and

P ∗, and 100 for D. We integrate the equations using an algorithm for solving

stiff equations. We found the MATLAB routine ode23s to be suitable, if slow.

The radial dimension is integrated up to ρ = 3. We have found this grid to

be sufficiently fine to reproduce results found with a finer grid. We have also

integrated ρ farther, and found no differences with our present results.
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Figure 3.1: Intensity bistability curve generated with Eq. 3.17 for C = 50. y

is proportional to the input field, and x is proportional to the field inside the

atom-filled cavity. ycrit (= 46.7 in this case) is the lowest value of y for which

there is on-resonance bistability.
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This numerical integration gives the time response to an arbitrary step

excitation taking into account the spatial variation of the mode function. To

model the actual output for different input intensities, we start the numerical

integration of Eqs. 3.14–3.16 with the system in the ground state and impose

a driving term y starting at time t = 0. The driving field is a Heaviside step

function multiplied by y. For a turn-off, the initial conditions for the 302 equa-

tions are taken from a turn-on simulation which has already reached steady

state, and the driving term y is a complimentary Heaviside step function. An

example is shown in Fig. 3.2. The upper plot shows the input drive term y.

The lower plot shows the intracavity intensity |x|2. From this result we can

extract the eigenvalues of the system. We will use them later to compare with

experimental results, and need to know them well.

Since the system we are studying is nonlinear, the eigenvalues change as

a function of input intensity, so we must find their local value at a particular

input intensity. From the time response we find the oscillation frequency. By

repeating the calculation for different values of y we can find the change in

the eigenvalues as a function of input intensity. In practice, we find a local

eigenvalue in the following way. If we set the initial conditions very close to

the steady state, the system will oscillate at its eigenfrequency ΩVR. At very

low input intensities, the eigenvalue is at Ω0, the vacuum Rabi frequency pre-

dicted by Agarwal [2]. By doing repeated numerical integrations at increasing

input fields, we find a curve representing the eigenvalue as a function of input

intensity. After a numerical integration of the field x is complete, we subtract

the steady state value and then use only the results after the first zero crossing
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Figure 3.2: Numerical simulation incorporating the mode function of the cav-

ity, using Eqs. 3.14–3.16. The upper plot shows the input driving term y, and

the lower plot the intracavity intensity |x|2.
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following a maximum. The resulting function is then anti-symmetrized to pro-

duce a function whose integral is zero (eliminating a zero frequency component

in the Fourier transform), and we take its Fourier transform. We fit the peak

in the Fourier transform to a Lorentzian lineshape, and take its center to be

the eigenfrequency. An example of the time response and the Fourier trans-

form is shown in Fig. 3.3. The real part of Eq. 2.7 shows that the decay rate

of the combined atom-cavity system should be (κ+γ⊥)/2. For very low inten-

sities (x � 1), we can use this as a guide to analyze the numerical simulation.

We integrate Eqs. 3.14–3.16 for y = 0.01ycrit, which gives a steady state x of

0.005. The half width of 3.1 MHz is close to (κ+γ⊥)/2 = 3.05 MHz, indicating

that the numerical integration algorithm and the FFT procedure are doing a

reasonably good job of extracting the longer time scale decay envelope of the

oscillations as well as the shorter period oscillations themselves.

To stress the importance of the spatial dependence at higher input inten-

sities, a comparison of the eigenfrequencies for the two sets of Maxwell Bloch

equations is shown in Fig. 3.4, one for a plane travelling wave mode and the

other for a Gaussian beam standing wave mode. The behavior is qualitatively

different between the two sets. The solid lines are from the eigenvalues for the

plane travelling wave case (Eq. 3.10). The dashed lines are for the Gaussian

beam standing wave case, obtained from the procedure outlined above for dif-

ferent values of y. The abscissa is Y/Ycrit, where Y ≡ y2. ycrit is the smallest

value of y for which on-resonance bistability occurs, calculated separately for

each C for the two sets with Eqs. 3.4 and 3.17. There is significantly more

change with frequency for the standing wave Gaussian beam case than for the
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Figure 3.3: FFT of the output from Eqs. 3.14–3.16, for y = 0.01ycrit, C = 50,

κ = γ⊥. The solid line is a fitted Lorentzian used to determine the center

frequency.
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plane wave ring cavity solution.

3.3 Experiment

In this experiment the apparatus is similar to that described in Chapter 2.

The heart of the apparatus [28] is a high finesse optical cavity formed by two 1.3

cm diameter mirrors, each with radius of curvature of 7.5 cm and transmission

coefficient of 2.4× 10−4, separated by 4.1 mm (see Fig. 3.5). An oven heated

to ≈ 430 K produces an effusive beam of Rb atoms that are optically pumped

before intersecting the cavity mode at 90◦. This provides a continuous stream

of two-level atoms that on the average spend 11 lifetimes crossing the waist of

the TEM00 Gaussian mode of the cavity. The parameters of the experiment are

(g, κ, γ⊥) = 2π(1.5, 1.38± 0.02, 3.04)× 106 rad/sec, falling in the intermediate

regime of cavity QED. The excitation source is a cw Ti:Sapphire laser locked

on resonance to the 5S1/2, F = 3 → 5P3/2, F = 4 transition of 85Rb. Part of

the laser beam is split into an intense auxiliary beam to lock the cavity on

resonance using FM sidebands [31]. The other beam, much weaker in intensity,

serves as the signal beam. A chopper wheel alternatively passes the locking

or the signal beam at a rate of ≈1 kHz. The signal and lock beams are mode-

matched into the cavity. The beam emerging from the cavity passes through

a beam splitter by which 8% of the beam is split off and sent to a PMT

to monitor the lock beam. The remainder of the beam is sent to a photon

counting detector, discussed below.

While the locking beam is blocked, the signal beam is turned on and off
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Figure 3.4: Eigenfrequencies for the plane wave and Gaussian beam transverse

mode function sets of Maxwell Bloch equations as a function of input intensity.

The solid lines are from the plane wave model, and the dashed lines from the

Gaussian beam standing wave model. κ = γ⊥ = γ‖/2. For plots a, b, and c,

C = 20, 50, and 100, respectively.
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with a 4 µs period by two electro-optic modulators (EOM) in series (Gsänger

LM0202 with Gsänger LIV 8 controllers). A Stanford DS345 synthesized func-

tion generator provides start pulses for the time-to-digital converter, and a

trigger pulse for a Stanford DG535 digital delay/pulse generator, which itself

produces TTL pulses for the EOM controllers. A signal from the chopper

wheel gates the triggers from the DS345, so that the probe light is off while

the lock beam passes, and chopping when the probe beam passes.

We used an on:off period ratio of 1:3 rather than 1:1, which enhanced the

performance of the EOMs. The turn-off response of the signal beam intensity

after the EOMs closely fits a Gaussian curve with a half-width of 9 ns, and has

been carefully studied for use in another experiment.[32] The turn-off 90%–

10% time is 12.5 ns. The turn-on has a similar response, but is slightly faster,

with a 10%–90% time of 9 ns. The extinction ratio between the turn-off time

t0 and time t0 + 20 ns is 250:1. The output decays roughly exponentially for

the next 250 ns, reaching an on:off ratio of 400:1 at t0 + 25 ns and 1200:1 at

t0 + 270 ns. The intensity decreases linearly for the next 2.5 µs by a factor

of two. The alignment of the EOMs is delicate. An initial adjustment may

be made while in dc mode, while the EOMs stay in their “off” position. The

on:off ratio of each one in dc mode can be 300:1, but when switched with a 4

µs period, the ratio for the two in series is only ∼200:1. Further adjustment

while switching is necessary to reach the extinction ratios quoted above. For

use in another experiment [32], where the extinction is more critical, ratios of

800:1 have been reached for t0 + 25 ns. All of the above numbers are from

histograms compiled from many turn-offs, and are not sensitive to different
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contributions from a finite time turn-off and jitter in the exact turn-off time

relative to the pulse which triggers the histogram.

The EOMs and their controllers are located 2.5 m from the photon count-

ing detector, which poses some problems. The controllers emit a large amount

of rf radiation as they switch the high voltage on and off. We initially used a

PMT (Hamamatsu R636-10) in photon counting mode as our detector, with

no preamplifier, so the photoelectric pulses had to travel several meters to

the counting electronics. The pulses were discriminated by a Stanford SR400

gated photon counter, but the rf from the EOM controllers caused false counts

near the turn-on and turn-off times. Shielding of cables and the installation of

an rf cage around the controllers did not bring the stray pulses under control.

Oscillations in the count rate of 30% were typical, with a period of ≈ 18 ns.

The rf problems were not too bad with a single EOM, but with two EOMs the

problems were such that the PMT was not a useful tool.

We switched detectors to an EG&G SPCM-AQ-151, an avalanche photo-

diode (APD) packaged on a Peltier cooler, with discrimination circuitry. The

package is powered by a 5 V supply, and returns TTL pulses when it detects a

photon. The quoted detection efficiency of this model is 50% at 780 nm. We

measured a dark count rate of 27 counts per second and a dead time of 28 ns.

The EG&G module is significantly more immune to the rf from the EOM

controllers. The TTL pulses pass through a discriminator and are converted

to NIM by the SR400 (which has a bandwidth of 200 MHz), then converted

again to ECL (with a LeCroy 4616). A LeCroy 3377 time to digital converter

(TDC) starts with a gated pulse originating from the DS345 converted to NIM
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(with a LeCroy 688AL) then to ECL, and registers a hit for each signal from

the APD, up to 16 hits per start during the 4 µs data collection. The TDC

has 0.5 ns time resolution, with 10% differential nonlinearity. The differential

nonlinearity indicates the percentage difference that a given bin width may

be from 0.5 ns. We have calibrated the overall time scale with a known delay

to 0.25%. The times are dumped to a LeCroy 4302 memory unit, and then

read into a computer via an IEEE-488 bus and compiled into a histogram (see

description in the appendix).

3.4 Results

During a data run, we let the oven temperature stabilize and then perform

a measurement of the on-resonance intensity bistability, by sweeping the signal

beam intensity and recording the output characteristics (see Fig. 2.2) [28]. This

scan identifies Icrit, the lowest input intensity at which there is on-resonance

bistability [26]. We then fix the signal beam input intensity and collect data

which we store in a histogram. This is repeated for different values of the

input intensity, both above and below Icrit. We also explore other coupling

strengths (g
√

N̄) by changing the number of atoms with the oven temperature

(the smallest value was N̄ = 25). The results are qualitatively similar to those

presented here.

Fig. 3.6a shows the response of the system to a step excitation of 1.2Icrit

for an effective number of atoms in the cavity mode of N̄ ≈ 300. The input

intensity is lower than the turn-up point in optical bistability (see Fig. 2.2), so
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the steady state of the system is always on the lower branch. The transmitted

intensity grows from zero and then turns over once the atoms start building

up a polarization that then exchanges energy with the cavity mode. The

measured intensity oscillates at two frequencies, because the output field is

composed of a part oscillating at approximately ΩVR and the slow build up of

a steady state field (x < 1). For the first part of the turn-on, the oscillations

in the field are around zero and large enough that they cause an intensity

oscillation at 2ΩVR. At the end, field and intensity both oscillate at ΩVR since

the amplitude of the oscillations are smaller than the steady state. Fig. 3.6b

shows the freely evolving system after the sudden turn-off of the excitation.

The frequency of oscillation in this case is twice the frequency of oscillation

of the field. Note that the intensity first decreases and then grows to a value

much larger than the steady state. There is a large amount of energy stored

in the atomic polarization opposing the incoming field. This can easily be

seen in the low-intensity-limit form of the state equations, Eq. 3.4 or Eq. 3.17,

y = x(1 + 2C), as noted before (Section 3.2). Recall that y is the intracavity

field in the absence of atoms, while x is the intracavity field in the presence of

atoms. The contribution of the collective polarization is 2C times that which

is free in the cavity. When the incoming field is turned off, the steady state

equilibrium is disturbed, and the energy is free to go into the cavity. From

there it can escape, but part of it returns to the atoms. We can observe more

than 12 exchanges before the signal decays into the background noise (see inset

on Fig. 3.6b).

Fig. 3.7 shows theoretical results for the same parameters as in Fig. 3.6,
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with the turn-on and turn-off as Heaviside step functions. The relative scaling

of the frames in each set of figures is the same to allow for comparison. The

height of the oscillations relative to the steady state is much greater in the

theoretical plots than in the data. For the turn-on, the ratio is 34 for the

theory, and 9.4 for the data. The turn-off ratios are 26 for the theory, and 5.8

for the data. The frequencies of oscillation, however, agree very well.

A calculation with the same parameters as in Fig. 3.7, but with a nonzero

background, is shown in Fig. 3.8. The steady state level before the turn-on is

x = 0.13, so |x|2 = 0.018. This corresponds to an input intensity of I/Icrit of

0.1. The turn-off is from the higher steady state level back to x = 0.13. The

size of the oscillations with respect to the background changes dramatically

with respect to Fig. 3.7. The ratio of peak to steady state for the turn-on is

19, and for the turn-off is 11.

One notable feature of the experimental data in Fig. 3.6 is that the oscil-

lations do not go to zero, even though the frequency is 2ΩVR, indicating that

the field oscillations are large enough to go through zero. In Fig. 3.8 the os-

cillations in the turn-off go to zero even in the presence of a large background

from an input intensity of I/Icrit = 0.1. The residual background from an in-

complete turn-off is much smaller. In Fig. 3.6b, the dip between the first and

second big peaks has a lowest level of ≈1/4 the steady state value, while the

input intensity is down to 1/400 its steady state at that time, I/Icrit = 1.2/400.

The troughs still do not go to zero at t0 + 200ns, but do oscillate at 2ΩVR,

unlike Fig. 3.8. A finite time turn-off is well over by that point. In addition,

no rf noise was detected in the turn-off region with the APDs.
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One possible cause lies in the jitter between the turn-off time and the start

trigger time for the histogram. As was noted above, our means of character-

izing the turn-off pulses cannot distinguish between jitter and a finite turn-off

time, but the ringing response would be quite sensitive to jitter. Using the

theoretical plot from Fig. 3.7, and summing over a Gaussian distribution of

starting times with σ = 2ns, we get a time response with raised troughs simi-

lar to the data. A comparison of such a simulation and the data is shown in

Fig. 3.9. For ease of comparison, the theory has an added background of 0.01.

The beginning of the signal does not agree between the two because the size of

the oscillations in the theory is much larger (with regards to the steady state)

than the experimental results. Hence the initial dip in the theory is much

more sensitive to jitter. The agreement with this simulation is quite good,

suggesting that part of the observed turn-off time is caused by a variation in

the turn-off time with respect to the histogram. It is important to note that

this type of variation will only affect the amplitude of the signals, not their

frequency. The jitter is equivalent to adding together sets of oscillations which

are out of phase:

cos(ωt + φ1) + cos(ωt + φ2) = r cos(ωt− Φ) (3.18)

where r = 2 cos[(φ1 + φ2)/2] and cos Φ = (cos φ1 + cos φ2)/r, which does not

change the frequency of oscillation.

Using the plane wave model as a guide, the theoretical decay rate of the

field of the atoms-cavity system is (κ+γ⊥)/2, which in this case is 2.22±0.05×

2π × 106 rad/s, neglecting any broadening of γ⊥. To find the decay constant
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from the turn-off response, we take the fast Fourier transform of the turn-off,

starting at the peak of the first oscillation, extending for 2.5 µs. The Welch

window [33] is applied to the data before taking the Fourier transform. This

window multiplies the data by a function which drops to zero at the edges,

and reduces the size of sidelobes next to the peaks. A set of Lorentzians is

then fit to the FFT amplitude. The Fourier transform of e−βx cos2(αx) is a set

of Lorentzians, one centered at zero, and one at the oscillation frequency. This

procedure on simulated data with a decay constant of 30 × 106 rad/s yields

the correct width with a 1% accuracy.

The Fourier transform of the time response with accompanying Lorentzian

fit is shown in Fig. 3.10. The fit is of three Lorentzians, one of which is forced

to be centered at zero, and is performed with the MATLAB routine fmins,

which uses a Nelder-Mead type simplex search method. The large peak is

at 2ΩVR, since we measure the intensity of the output light, and exchange of

energy between the atoms and the field is taking place at ΩVR. A small amount

of the fundamental frequency is also visible in the figure. The best fit for the

fundamental frequency is half of that of the big peak to within 1%. The width

of both the Lorentzian centered at zero and the one at 2ΩVR have a FWHM

of 9.8 ± 0.2 MHz, with the uncertainty estimated by the agreement between

the two, and by the inherent accuracy of the procedure. The decay constant

of the field then is 2.45 ± 0.10 × 2π × 106 rad/s. The difference between this

number and the 2.22 quoted above gives us an idea of the size of broadening

mechanisms affecting the atoms. For comparison, Fig. 3.11 shows the turn-off

response of the cavity without atoms present. The curve is exponential, and
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gives the decay constant of the cavity. Fitting a line to the data in Fig. 3.11

gives a decay constant of 1.38± 0.02× 2π× 106 rad/s, in agreement with and

much more precise than our measurement of 1.4± 0.1 MHz for the half width

half maximum of the cavity resonance, made by scanning the cavity length with

a piezo-electric transducer across resonance with the laser frequency fixed.

3.5 Conclusions

Fig. 3.12 shows the frequency of oscillation of the output field as a func-

tion of the input intensity, obtained from the fast Fourier transform of the time

response. The dashed and dotted lines come from the time-response calcula-

tions, when the driving field is suddenly turned on and off. As Fig. 3.4 shows,

these curves are much different than the corresponding behavior in a plane

wave ring cavity. The turn-on has a frequency shift towards smaller values for

larger input intensities. The system is driven and oscillates in the non-linear

regime. The uncertainties are limited by the ability of the Fourier transform

to extract the correct frequency. Fig. 3.13 is a comparison of the frequencies

obtained from the time response measurements and from the spectroscopic

measurements described in Chapter 2. The solid line is the prediction for the

evolution of the anharmonic vacuum Rabi peaks as the intensity of the spec-

troscopic probe changes, using parameters appropriate for the experimental

data. It describes the condition that there be no phase shift between input

and output fields (see Section 2.2). Although the experimental conditions for

the time and frequency observations are different, the scaling of frequencies
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and intensities with Ω0 and Icrit permits a direct comparison. The model pre-

dictions for the two different Ω0, and Icrit realized in the experiments differ at

most by 8% at the highest intensity. The oscillation frequency of the turn-off

response is fairly constant at Ω0 since the system oscillates at low intensity

(no drive) most of the time. The data obtained spectroscopically follow closely

the zero-phase condition, eventually merging the two peaks into a single one

for I ≈ Icrit. The values obtained in the small intensity region I/Icrit � 1

show two distinct features. First, the spectroscopy and the time domain mea-

surements reach the same value of the oscillating frequency ΩVR/Ω0. In this

regime, the system is linear and its response to step excitation gives the same

information as the transmission spectroscopy. Second, the slopes of the curves

are very different at I/Icrit = 0. The zero phase condition Eq. 2.9, established

in the driven system between the input and output fields, creates a relation-

ship between the oscillating frequency ΩVR and the intensity I. Its derivative

with respect to the intensity is non-zero even for zero intensity as shown by

the theoretical curve.

The spectrum obtained for the coupled atoms-cavity system by analyzing

the time response to step excitation shows the oscillatory exchange of energy

with an excitation dependent period. Despite a high excitation for the turn-off

time response, the system oscillates at the low intensity frequency, providing

no information of the possible non-linear regime. The turn-on time response

frequency shows an intensity dependence, demonstrating that the resulting

behavior is a probe of the eigenvalues of the system at a finite input intensity.

The frequency dependence is much different than in the spectroscopic case de-
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scribed in Chapter 2. From the agreement between the theory and experiment

in the frequencies of oscillation, however, it is evident that a frequency mea-

surement in the system may be a more reliable means to extract quantitative

information than the absolute heights of signals.

The turn-off measurements also give good agreement with theory in their

decay rates, both with atoms and without. With no atoms present, it is

possible to extract very precisely the decay constant of the cavity. When

measuring a decay rate of the atoms-cavity system, the peaks give both the

average decay rate of the system and the frequency of oscillation.

In more general terms, we have made a conditional measurement of the

dynamics of the atoms-cavity system. The condition in this case is the sudden

turn-on or turn-off of the input light from steady state. The excitation or

de-excitation comes from the field, not from the atoms. This is contrary to

experiments in the microwave regime such as those in the group of Haroche

[6], in which the atoms enter the cavity in an excited state. A conditional

intensity measurement can be a very powerful tool, and we learned several

things about its use in this case.

In order to probe the nonlinearities of the system, we need to use a con-

ditional measurement which leaves the system (finally) in a non-zero steady

state. For the turn-off measurements, the absence of a driving field left the

system free to evolve towards a steady state with no energy in it. The results

show only the basic harmonic structure of two coupled oscillators, one corre-

sponding to the polarization and the other to the field. On the other hand,

the turn-on measurements allowed us to probe the response of the system as it
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was coming to a steady state with non-zero energy, which provided information

about the eigenfrequencies of the system at that steady state.
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Figure 3.5: Simplified diagram of the experimental setup.
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Figure 3.6: Time response of the coupled atoms-cavity system to turn-on (a)

and turn off (b) step excitation of I/Icrit = 1.2. The inset is an amplification

by a factor of 30 of the vertical scale.
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Figure 3.7: Theoretical curves from a numerical integration of Eqs 3.14–3.16

for the same parameters as in Fig. 3.6.
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Figure 3.8: Theoretical curves from a numerical integration of Eqs 3.14–3.16

for the same parameters as in Fig. 3.6, with a steady state background of

|x|2 = 0.018.
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Figure 3.9: Data from Fig. 3.6b compared to a theoretical curve from Fig. 3.7

with a Gaussian distribution of starting times with σ = 2 ns. The theory has

an imposed background of 0.01.
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Figure 3.11: Turn-off response of an empty cavity. A line fit to the data gives

a decay rate of 1.38± 0.02× 2π × 106 rad/s.
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